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ABSTRACT
The Mori-TanakA inicromechanics method is used to predict the cflective properties of composite
materials consisting of a polymer matrix reinforced by a fiber made of a transformation shape
memory effect (SME) material. The composite response is plotted for combin.tions o the fol-
lowing scenarios: (1) isothermal longitudinal and tra.nsverse stress input, (2) stress-free thermal
loading, (3) constant fiber thermoelastic properties, and (4) thermoelastic fiber properties that
vary with the miartensitc volume fraction. For the case of an isothermal stress input, the compos-
ite transformation stress, the maximum transformation strain, and thc hysteresis are all reduced
vis.a-vis the monolithic SME material. In contrast to a. monolithic SME material, stress-free ther-
mal loading of a SME composite can produce a transformation strain. It is shown that closed form
solutions for the effective martensite and austenite start temperatures can be derived, that they
are sensitive to the stress-free reference temperature of the fiber, and that the sress-free austenite
and martensite start temperatures are higher than those of the monolithic SME material.

i. INTRODUCTION
Active shape memory effect (SME) materials allow for the fabrication of structures with intrinsic
contiol of shape and vibration parameters such as stiffness, niatural frequency, and damping. The
SME is usually due to either the stress induced trantsformation between austeuite and martensite
or the reorientation of martensite variants. For both the transformation and the reorientation
SMS, an active composite can be made by surrounding a prestressed martensitic SME fiber with a.
non-SME matrix material. When the composite is heated, usu-dly by passing an electric current
through the SME fiber, the martensite is transformed into anstenite and the fiber contracts,
thereby producing the activation. Upon cooling, the austcnitc transforms into m.rtensitc, and
the internal stresses (sometimes called egenstresses) within the matrix return the composite
structure to its original shape.
Constitutive equations describing the thernomechanical behavior of SME composites are needed
to ciable their efficiett production and service. i phetitonenological constitutive modelling,
thei form of the .(luatious and the constants in the equtations are determined from experiments.
Phcnomcnologicl modcelling is descriptivc, but not explanatory. Micromechanical constitittivc
miodelfihg consists ofsolving a.sniatl-sva boutidary vlnt: prolain and then averaing the soltttio

to obtain the effective (or overall) composite propertiae. Bcc.un.e .~icronwechanics is cxplanttatuy,
it allows for the systematic design of composite materials.
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It the present paper, the Mori-Tanakanicromechanics method is used to predict the thertnom.ch.nical response o" composites consisting of transformation SME flbcrs and no-SME mIatrices.The ma~trix of such a eomposite must be capable of accommodating the large strains associ.t .lwith the SME of the fiber. Polymers are therefore currently cnvisaged as matrix materials. Al-though the Iarge fiber transformation strains will cause viscoclasticity in the polymer matrix, thematrix is herein assumed to be linear thermoelastic. In part 2, the one-dimensional transfor.mation SME constitutive equations of Tanaka are extended to three dimensions. In part 3, theMori-Tanaka microtneclanics method is presented. The thcrmonicchanical behavior of both theSMlS fiber and the composite are discussed in part 4.Throughout the paper, superscripts denote qualitative description of the associated variables,
whereas subscripts denote tensorial components.

2. SME FIBER CONSTITUTIVE EQUATIONS
Liang and Rogers have extended Tanaka s one-dimensional transformation SME equations tothree dimensions. The present derivation is similar to the method of Liang and Rogers in thatit assumes that the transformation is unaffected by the hydrostatic stress. However, the present• derivation of the tangent mechanical and thermal stiffness tensors differs from the derivation ofLiang and Rogers. The stress-strain equation of state is given by

l =Ck C&= cijkl (4-1 d- - Cr.1 AT)()
where Co , a.. 4 ei, c, and AT are the elastic stiffness tensor, the thermoclastic expansiontensor, the elastic strain, the total infnitesfimal strain, the transformation strain, and AT =T - T', where T7 is the stress-free reference temperature. The elastic stiffness and thermoelasticexpansion tensors are approximated here by the rule of mixtures

= A + =(Cff. - CM, + _O (2)
where the superscripts A and M stand for austenite and niartensite. and , an internal variable
representing the volume fraction of martensite, is given by

during the inartcusitic transformation and

z a AA-T Al A <T < A (4)during the reverse transformation. M" and AGA represent the stress-fre, mairtensite anm astceiltestart temperatures, respectively. The stress dependence of the transformation temperatti r,. isgiven by
=M6 + - a, M/ .C-.

"C A ' C .
A& __________0,_________=___________+__1
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wtlere CM a.ud CA are the martensitic and axustcnitic stress influenc coefficients. Assuming that
the transformation is complete when - 0.99, the constants au, bM, GA and bA arc given by

S =n(O.01) au

(M - M)' CM

A(0aA _n(O.01) bA -a

(A'-A)' CA

By assuming that the stress-iktduccd SME is isotropic, these three-dimcnsional equations for
wcrc obtained from the one-dimensional equations by replacing the ore-dimensional stress by
the effective stress, &, where a = (.,and the deviatoric stress a' is given by a =

Cii - lakk6j. The rate cT transformation can be obtained by applying the chain rule to (3) and
(4) to yield

'9e 1. +(7)

aT Ea*
The transformatioa strain is due solely to that part of that is stress-induced. In other words,
it is assumed that a stress-free thermal loading of the SME material produces no transformation
strain because all of the martensite variants form with equal probability and the transfornma tion is
volume conserving, or isochoric. An applied stress, however, favors the growth of those martensitic
variants which are oriented to yield the largest transformation strains.
By aussuming that the elastic response is also isotropic, the three-dimensional transformation
strain rate can be obtained from the one-dimensional equation as follows:

it it V - = , ()

where the transformation tensor, fl, can be obtained from the maximum isothermal transfor-
inarion strain (which corresponds to f = 1) and the one-dimensional elastic modulus, D, using
et"V= - J. During the martensitic and reverse transformations, respectively, the "h.ardness"
paramneter, H, is

ifj'T-b(l-,) M< T<M"

A' < T 5 A!

H = 0 during transformation-free deformation.
Equations (I) througlh (9) complete the constitutive description of the SME material. IHowevcr,
the tang, ait mechanical and thermal stiffness tensors are needed in the Mori-Tanaka tincrome-
chaitics method. The tangent mechanical and thermal stiffitesses Lji - and liij, respectively, are
defined by

=ii =. .jjil + lT. (tO)

in order to derive these tangent stiffness teasors, equation (1) is written in rate form as

h~=C~k4 1 + Cj1~
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Equations (2) and (7) thru (9) can be substituted into (11) to yield

H1oq =(q - H Ci1kz(bt1 - 1

a .2)

Ci (,,,) AT( .+ - + (C, C~1 ) 41, .t+ ).

By introdatcing the term

=im k ijn + .t Cim (13)
and collecting the terms multiplying T and b, equation (12) can be rewritten as

,,i Nijmi =Cjk 1 + H CiL- ,...k,

+(ciP7iz - -4k) r Cikl(CLN IL -~)T] i (14)

+{ i - - -

The temperature rate T is assumed to be a known input. Recall that both #ij and ii are known
from the non-tangent form of the constitutive equations, equations (1) thru (9). Therefore, all of
the terms in equation (14) are known, and the tangent response can be determined. For example,
during an isothermal transformation the tangent stiffness is given by

Linki 4 4PP" ijmnEikl i 3 pU t~o (15);O O O

During transformation-free thermomechsnical loading, the tangent response is giver, by

i=lMci.4 - cikai"(16)

so that Lj 1 -- C.1ki and Iii = -Ckkjt*U

3. MICROMECHANICS

3.1 General expressions frr th~effective composite prooerti!

Equations (17) thri (32). I{iNl's 5 "direct approach" to effective composite properties, are general
relationships that are ind,:pcndent of the micromechauics method used to obtain the conccntration

tensors. The thernomeelianical constitutive relations of the phases v = n (matrix) and v = f

(fiber) are given by +(-,' = L?,;efi+"-T =M,f (17)

and
+ vn~T v=mi,f-(
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where L?,.k{ and Mi/y.,t arc the tangent stiffness and compliailce tensors. rcspetivly. The t1hcral
strain tensor my, and the thermal stress tensor P'. arc related by

Similarly, the composite responsc is given by the effective constitutive equations

6& = L + 1T (2 Lijklicki +

and
iq F + mnT (21)

with

The composite stress and strain rates are given by the volume averages

6r-C!.T+Cf (23)

and
i.CNm ' + c/f (24)

where c denotes the volume fraction of the vu, phase. The local constituent stress and strain
fields, assumed to be uniform within each phase, are given in terms of the composite fields by

o ,.k &z+ by'T , V = m, f (25)

and
dj Alpaeu+ qt , v=-i, f, (26)

where B'jk , A",fI. , hil and ae are the stress, strain, thermal stress and thermal strain concentra-
tion tensors, respectively. The concentration tensors are constrained by the relations

C IeB I&+ cDI ,kt = ,. (27)

C'A ' c Aj j- t (28)

Cm bri + c'Ibl>O0 (29)

and

eta~ + -l.W0, (30)

where Iijtj is the fourth order identity tensor The effective composite tangent stiffneim and
compliance tensors, respectively, are

" A - ,Lxj Al. (31)

,:e+. .
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aivd
Im .... rLk + cf M!. 1  (32)

%,m,l •n kl

Note that the effective stiffness is not the volurne average of the constitucunt stiftncsses.

The thermid stress and strain co centration tensors cat be determined using the decompositioii
scheme of Benvetiste anti Dvorak. The decomposition allows for the determinati;on of the thermal
concentration tensors a.s a function of the mechanical concentration tensors and the constituent
ther:iomeechanical properties. The thermal stress and strain conccntratiou tensors arc givcn as

ty= (fijkl - D73'1 -1) (~mk'Jn -MklmV mnm-vn),r, )(3

and 
f 

i4atayd oij--(h '- Aij,) (L%.,r,, - L"Lt)' - (t~r. _ lft) , 'u'=r~f . (34)

The effective composite thermal properties are given by

&ntd
-i n--C M A.iLm) Bf (Mf~ AO f m n) (36)

Note that equatiors (33) thru (36) are general relationships that are independent of the microme-
chanics method used to obtain the mechanical concentration tensors. This decomposition method
requires that the effects of thermal and mechanical loads can be obtained separately. This lin-
earity requirement is violated during the SME phase transformation. In the current incremental
formulation, it is assumed that the SME equations are piecewise linear, that is, linear within each
increment. The accumulated error will be small if small increments are used.

3.2 The Mori-Tanaka micromechanics method

From inspection of equations (17) thru (36), it is apparent that the effective composite ther-
momechanical constitutive equations may be obtained from the evaluation of the mechanical
concentratfn tensors. The mechanical conceitration tensors are herein determined tuing the
Benveniste' rinterpretation of the Mori-Tanaki method.

Eshedby's method, sometimes called the "equivalent inclusion method", is a means of predicting
the efFective properties of dUutely reinforced composite materials. The term "dilute" means that
tlie reinforcement phase is of a sufficiently small volume fraction that jhc units of reinforcement,
such as particles, wliskrs or fibers, do not interact. The Mori-Tanaka, method is an approximate
extension of Eshelby's method to the case of non-dilute volume fractions. The Mod-Tanuaka
method is a "imean field" theory, meating that the model assumes that the strom and the strain
are uniform within eath phase of the composite. The model makes use of the rcinforcenient
volume fraction atd the reinforcement shape, but the size of the units of reinforcement play no
part in the method. It is assumed that the temperature is uniforni throughout the composite. For
isothermal conditions, the concentration tensors are given by tlie Mori-Tanaka microinechanies
method as. (3D!} = w .(". + C W ,i, n, 1f, (r
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and
? .t k 1 m , + ) , VT k 1) t , f/ . ( 3)

The dilute strain concentration tensor Tf1 k and the dilute stress concentration tensor V 1 ;42c
dcfined s

adi, [kl + Sijn(L.o) -' (39)

W I -L f T I M 
(40

ikl - -mn mop o.,-1, (40)

with .
,z wj% = z,.. .(41)

The solution of the mechanical problem requires the evaluation of the Eshelby tensor, Sij.1,
which is a function of the reinforcement shape and the matrix stiffness. The Eshelby tensor
relates the unconstrained transformation strains and thermal strains, called "eigestrains" in the
vocabulary of Mura~to the actual trmnsformation strains and thermal strains in the composite.
Within the composite, these eigenstrains are partially constrained due to the mismatch of phase
mechanical and thermal stiffnesses. Because the matrix stiffness is herein assumed to bc constant,
the Eshelby tensor must be calculated only once, even though the SME fiber stiffness varies. If
the matrix stiffness varies, as it does during plastic deformation of metal matrix composites, then
it is necessary to calculate the Eshelby tensor in each load ste . For the case of an elIipsoid.b
reinforcement in a generally anisotropic matrix, the Eshelby tensor must be evaluated numerically.
For the case of isotropic matrix materials, closed form solutions for the Eshelby tensor have been
determined for a number of ellipsoidal reinforcement shapes. For the present case of circular
cylindrical fibers aligned in the z3 direction in an isotropic matrix, the components of the Eshelby
tensor are given by

S 1 1 1 1 = 2 2 2 2  -- 2Y') , S - S11 2 2 =S 2 2 -(- +21/)4(1 - 2) 4(1 - ) 2 (42)
S31=9S13 S11 -1 -2y), S232= :Sain :=

S3 3m =0, Si= =2(1 -v) 4( 1 - Y) 2

where ', is the matrix Poisson ratio. Note that the Eshelby tensor, and therefore the concentration
tensors, are not symmetric for the case of cylindrical fibers in an isotropic matrix.

4. RESULTS AND DISCUSSION

4.1 The effective transformation temneratureS

The composite will start and finish the phase transformation when the fiber sta rts and fitlishes
its transformation. In other words, M11 M-, Mel = M1 , A9, = A' and A'" = A- . where
tht superscript "" denotes "composite" and M", M 1 , A, and Al are given by (5). In order to
obtain equations for the effective, or composite. transformation temperatures, it is neccm;try to
relate tle fiber stress in (5) to the composite stress and the temperature. Unfortun.ately, the libci
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stress and the composite stress and temperature are in general related by the rate equation (25),
which includes path dependent concentration tensors. However, undcr spccial conditions, such its
non-transformational. (thermoelastic) deformation, (25) may be integrated in closed form to yield
a relation between the fiber stress and the composite stress and temperature. M"S and AC' can
be derived in closed form because they are reached via a non-transforniational (thermoelastic)
deformation. Consider the case of initial loading of an austenitic ( 0 - 0) composite. Prior to the
start of the martensite transformation, (25) may be written as

a j i + b'AT, v = m. f (43)

where the superscript "ca"denotes the elastic concentration tensor corresponding to an austenitic
fiber. The effective stress-free martensite start temperature, M4". can be determined in closed
form by substituting (43) into (5), with a = 0, to yield

MWCOS = a M0  -MOS+, N,€°  + l° I- 8f= ° - -. (ATA']T, (44)
CM Cm.(TA P

where the superscript "'f" denotes "fiber", not "finish", 6 , ' _ (Ib 'ebfe") and / -

- b,.26ij. By noting that both CM r and W"' are positive semi-definite, it is apparent
from (44) that the effective threshold MC*1 is never less than the vin.trix threshold M" because
the thermal eigenstresses raise the fiber M' temperature. Thus, although the fiber and compos-
ite transformation temperatures are equal (Mc" - M'), it does NOT follow that the fiber and
composite stress-free nartensite start temperatures are equal. i.e. M"10- 0 M". Equation (44)
illustrates the importance of the relative values of M's and 7' and ' Pe in determining the
temperature increment AT that will initiate the stress-free composite martensite transformation.
The relationship between M"o' , AT and T is plotted in Figures 1(a) tid 1(b). Note from Figure
1(a) that if M1 > T° and the slope Lrlw _ 1, then any AT will result in a temperature that
is below M1€ '. From Figure l(b), it is apparent that if M" < T* and the slope Ir6," > 1,
then there is a region AT* < AT < AT" in which T is above the M c*" threshold. In this
case, the martensitic transformation may be initiated by either cooling or heating the stress-free
composite. The effective austenite start temperature can also be determined by following the
previous procedure. Consider the case of initial loading of a martensitic (1 = ) composite. Prior
to the start of the austenitic transformation, (25) may be written as

D'=" 1 +bje A2A, V = 7n, f (45)

where the superscript "emu" denotes the elastic concentration tensor corresponding to n miartensitic
fiber. The effective str..-free austenite start temperature, Ac"a, can be determined in closed form
by 3uhstitttting (45) into (5), with af = 0, to yield

Ac" r A" +- 1 = AG + .l(AT4T) . (4G)

The relationship between Ae" , AT and T is plotted in Figvrcs 1(c -and 1(d). Note from Figure
l(c) that if A " > TV and the slope rb"l" .> 1, then no AT will result in a teinperatiirc that
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is above ACO*. Froiri Fgure 1(d), it is apparent that if A*J < T" and the slope r b €e > 1,
then there is a region ATt < AT < AT" in which the temperature is above thc 4 '*' threshold.
In this case, the atstenlitic transformation may be suppressed by either cooling or heating the
stress-free composite.

This procedure for detcrmining .feS and AC"A is not suitable for determining the eFective stress-
free finish temperatures Mcf and AcoJ because (25) cannot be integrated in closcd for, d'uzring
the transformation leading to Mc "f and Acof.

T' will probably depend on thc composite manufacturing method. The depondence of MCOS
and ACo ' on T' indicates the importance of modelling the thermoinechanics or the composite
fabrication.
The stress dependence of M " and A"' can be determined by substituting (43) into (5) with
AT = 0 to yieid

1sa 1 '(3 Blea'f(47
IV = M' = + M' + 2j~tjkLEt Ao/ ) (47)

"where Bj'.c e Be-Rea S" In a similar manner, the stress dependence of A" can be

obtained as

ACaft~A - A' + Blekea (~c)., (48)

Both Mcs and A" increase linearly with afi, but the effect is now anisotropic: different compo-
nents of a5. have different influences on M" and A". The effective transfonuation is anisotropic
and pressure dependettL even though the SME fiber is isotropic and pressure-independent. Also,
the effective transformation tensor is no longer a scalar.

This procedure for deterniining the stress dependence of Me' and Acs is not suitable for deter-
mining the the stress dependence of Mel and A ! because (25) cannot be integrated in closed
form during the transformation leading to Me! and A0t. In monolithic SME materials, the M1

and Af lines are parallel to the M' and As lines in a stress-temperature space. The present
authors are currently studying the history dependent shape of the Me! and Al! lines.

4.2 The SME fibet resomise

The thermrnomechanical behavior of a NiTi SME fiber presented in Figures 2 thru 4. ThIe NiTi
material propertiei,.r, given in Table 1. Pigure 2 indicates that for temperatures greater than
Af the SME is replaccd by pseudoelasticity due to transformation. For Figure 2, it was a&sumcd
that the fiber elastic modulus was constant and equal to the average of the austenitic (FA) and
martensitic (EM) elastic modifi. The effects of a variable elastic modidus may be seen in .igure
3. The results of a stress-free thermal loading are shown in Figure 4. Recall that a strvss-frec
therinal transformation does not produce a transformation stran. Therefore, the totl strain i,
Figure 4 is eqnal to the thermoehwstic strain. Note that in the cC-ae of a variable thermoelastic
expansion coefficient, the finish strain does not equal the start strain even though he finish
temperature is equal to the start temperature.
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4.3 Thc SME composite resnonsj

The tirmomechanical effects of manufacturing, such as applying a prestross to the SME fiber,
aLrc not considered herein. The response of a SME composite (c" = 0.30) is given in Figures 5 thru
7. In Figires 5 and 7, it was assumed that the fiber thermoclastic moduli arc constLnt and equai
to the average of EA' and EMf. Figure 5 indicates that the isothermal transformation stress., the
isothermal transformation strain, and the isothermal hysteresis are all reduced in the composite
vis-a-vis the monolithic SME material. By comparing the longitudinal and transv:rsc responses,
it may be seen that the transformation stress and the maximum transformation strain are highly
anisotropic, which indicates that the effective stress influence coefficient and transformation tcn-
sors are anisotropic. The effects of variable fiber elastic moduli mav be seen in Figure G. The
longitudinal composite response is more sensitive than the monolithic SME material response
(Figure 3) to the effects of variable elastic moduli. However, the transverse composite response
.s less sensitive than the monolithic fiber response (Figure 3) to the effects of variable clastic
moduli because the compliant matrix dominates the transverse response. Figure 7 indicates that,
in contrast to the monolithic SME material (Figure 4), thermal loading of a composite tihat is

free of net stress (a=f = 0) results in a transformation strain. During the transformation, which
begins at approximately 230 C, the composite thermal expansion coeicient varies because the
fiber meclanical tangent stiffness and the mechanical stress concentration tensor vary. The vari.
able composite thermal expansion coefficient is not a result of variable fiber thermoelstic moduli,
which were assumed to be constant in Figure 7. After the transformation is complete, the com-
posite thermal expansion coefficient is equal to its value prior to the start of the transformation.;
this would not be true in the case of variable fiber thermoelastic moduli.

5. SUMMARY
The Mori-Tanaka. micromechanics methcd was used to predict, the effective properties of SME
composite materials consisting of a polymer matrix reinforced by a transformation SME fiber. For
the case of an isothermal stress input, the composite transformation stress, the maimum utrans-
formation strain, and the hysteresis were all reduced vis.a-vis the monolithic SME material, in
contrast to a monolithic SME material, stress-free thermal loading of a SME composite can pro-
duce a transformation strain. It was shown that closed form solutions for the effective iartcnsite
and austenite start temperatures can be derived, that they are sensitive to the stress-free Mter-
enr:e temperature (T") of the fiber, and that the stress free transformation start temperatures arc
higher than those of the monolithic SME material.

In future research. the present authors will consider: (1) the effects -of matrix viscoelasticity. (2)
the influence of manufacturing effects such as residual stresses and alteratiot of T'. and (3) the
shape and path dependence of the trazisformation finish temperatures in a strcss-tenperature
hyperspace.
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Table 1. Fiber wid inatrix properties

NiTi material properties

RA -30.0 x 10' MPa

Ew =13.0 x 103 MPz
v' =0.33

a A =12.5 x104C
a M =18.5 x 1O,/OC

MV =23*C
Mf =Sac

A' =29*C
A1 =-510C

C'fl 1.3 MNa/C
CA 4 .5 Ma/'C

nl =0.91 x1i3 MI'a

Polymer materia properties

E =2.0 x 103 MPa
vi =0.33

a =75 x 10-0/ac
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(c) Ao' > T*

Ar' A 1' I~

(d) A" < V
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Figure 2.The monolithic (c! = 1.0) SME material
response, constant thermoelastic moduli.
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